An Extreme Learning Machine for the Simulation of Different Hysteretic Behaviors

Author:

Farrokh MojtabaORCID,Ghasemi Farzaneh,Noori MohammadORCID,Wang TianyuORCID,Sarhosis VasilisORCID

Abstract

Hysteresis is a non−unique phenomenon known as a multi−valued mapping in different fields of science and engineering. Accurate identification of the hysteretic systems is a crucial step in hysteresis compensation and control. This study proposes a novel approach for simulating hysteresis with various features that combines the extreme learning machine (ELM) and least−squares support vector machine (LS−SVM). First, the hysteresis is converted into a single−valued mapping by deteriorating stop operators, a combination of stop and play hysteresis operators. Then, the converted mapping is learned by a LS−SVM model. This approach facilitates the training steps and provides more accurate results in contrast to the previous experimental studies. The proposed model is evaluated for several hystereses with various properties. These properties include rate−independent or rate−dependent, congruent or non-congruent, and symmetric or asymmetric problems. The results indicate the efficiency of the newly developed technique in terms of accuracy, computational cost, and convergence rate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Tracking control of piezoelectric stack actuator using modified Prandtl–Ishlinskii model;Chen;J. Intell. Mater. Syst. Struct.,2012

2. Inverse model–based iterative learning control on hysteresis in giant magnetostrictive actuator;Liu;J. Intell. Mater. Syst. Struct.,2013

3. Random vibration of degrading, pinching systems;Baber;J. Eng. Mech.,1985

4. Parasuchus hislopi Lydekker, 1885 (Reptilia, Archosauria): Proposed replacement of the lectotype by a neotype;Chatterjee;Bull. Zool. Nomencl.,2001

5. Über die magnetische Nachwirkung;Preisach;Z. Für Phys.,1935

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems;Mechanical Systems and Signal Processing;2023-12

2. Cable Tension Estimation For The Cable-stayed Bridge With Hysteresis Damping;IOP Conference Series: Materials Science and Engineering;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3