Influence Analysis of Traveling Wave Effect on Rail Interaction of Long-Span Suspension Bridge

Author:

Yu XiangdongORCID,Wang Chuhao,Jing HaiquanORCID

Abstract

At present, there are few research results on the seismic response of the track system on railway suspension bridges, and relevant research has not yet formed a certain standard. In order to provide a certain reference for the development of industry standards and the design of seamless lines on railway suspension bridges, based on the large-mass method based on multi-point excitation, taking China’s longest high-speed railway suspension bridge-Wufengshan Yangtze River Bridge as the engineering background, a beam–rail integrated dynamic calculation space model was established with ANSYS, and the influence of traveling wave effect on the beam-rail interaction of large span suspension bridges was studied. The study shows that: the traveling wave effect will increase the relative displacement of the beam and rail, and then increase the stress of the rail; the traveling wave effect will cause the stress of the rail far from the source measurement to lag behind the stress of the rail near the source side, and the lag phenomenon gradually disappears with the increase of the apparent wave speed; the traveling wave effect has a greater effect on the displacement of the main bridge end than that of the approach bridge end; the longitudinal displacement of the main bridge end on the north and south side keeps changing synchronously under high apparent wave speed and consistent excitation, and no longer keeps changing synchronously under low apparent wave speed. The longitudinal displacement of the north-south side of the main bridge end keeps changing synchronously at high apparent wave speed and consistent excitation, but no longer at low apparent wave speed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. China Academy of Railway Sciences (2017). Deepening Research on Bridge and Tunnel Construction Technology for Railway Lines—Key Technology Study for 1,000m Span Public-Rail Suspension Bridges Sub-Report 7, China Academy of Railway Sciences.

2. Approach to structural features of telescopic devices at beam ends of railway bridge;Fei;Railw. Stand. Des.,2015

3. Effects of rail restraints on longitudinal seismic response of railway bridges;Huang;J. China Railw. Soc.,2001

4. Seismic response of beam and rail systems of railway simple girder bridges under traveling wave effect;Yan;J. Vib. Eng.,2013

5. Research on longitudinal seismic responses of continuous welded rails on large-span bridges;Yan;J. China Railw. Soc.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3