Real-Time Stereo Visual Odometry Based on an Improved KLT Method

Author:

Guo Guangzhi,Dai Zuoxiao,Dai Yuanfeng

Abstract

Real-time stereo visual odometry (SVO) localization is a challenging problem, especially for a mobile platform without parallel computing capability. A possible solution is to reduce the computational complexity of SVO using a Kanade–Lucas–Tomasi (KLT) feature tracker. However, the standard KLT is susceptible to scale distortion and affine transformation. Therefore, this work presents a novel SVO algorithm yielding robust and real-time localization based on an improved KLT method. First, in order to improve real-time performance, feature inheritance is applied to avoid time-consuming feature detection and matching processes as much as possible. Furthermore, a joint adaptive function with respect to the average disparity, translation velocity, and yaw angle is proposed to determine a suitable window size for the adaptive KLT tracker. Then, combining the standard KLT method with an epipolar constraint, a simplified KLT matcher is introduced to substitute feature-based stereo matching. Additionally, an effective veer chain matching scheme is employed to reduce the drift error. Comparative experiments on the KITTI odometry benchmark show that the proposed method achieves significant improvement in terms of time performance than the state-of-the-art single-thread approaches and strikes a better trade-off between efficiency and accuracy than the parallel SVO or multi-threaded SLAM.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3