Subsea Methane Hydrates: Origin and Monitoring the Impacts of Global Warming

Author:

Cheverda VladimirORCID,Bratchikov Denis,Gadylshin Kirill,Golubeva ElenaORCID,Malakhova ValentinaORCID,Reshetova Galina

Abstract

The East Siberian Arctic shelf is the area where the largest natural gas reserves are concentrated. The formation of permafrost of the Arctic shelf during the Ice Age contributed to the emergence of a zone of stable existence of gas hydrates in the sedimentary layer, and subsequent flooding of the shelf led to its gradual degradation, the thawing of gas hydrates and the subsequent emissions of methane into the atmosphere. In the first part of the paper, we use mathematical modeling to study the processes of the formation of subsea permafrost on the Arctic shelf considering changes in the sea levels over the past 200 thousand years. Numerical simulations show the influence of climate warming up to 2200 on the degradation of subsea permafrost and the violation of the conditions for the stable existence of methane hydrates in bottom sediments using the example of the East Siberian shelf. The second part of the paper proposes a method for seismic monitoring of the state of gas hydrates based on a solution of multi-parameter inverse seismic problems. In particular, the degree of attenuation of seismic energy is one of the objective parameters for assessing the consolidation of gas hydrates: the closer they are to the beginning of decomposition, the higher the attenuation and, hence, the lower the quality factor. In this publication, we do not solve a multi-parameter inverse seismic problem for a real geological object. This would be impossible due to the lack of necessary data. Instead, we focus on substantiating the possibility of correct solutions for the problem of the reconstruction of the absorption and velocities for a viscoelastic medium in relation to the problem of monitoring the state of gas hydrate deposits. As noted in a range of publications, the thawing of gas hydrates leads to an increase in the fluid saturation of the geological medium followed by an increase in the absorption of seismic energy—that is, a decrease in the quality factor. Thus, the methods of seismic monitoring of the state of gas hydrates to predict the possibility of developing dangerous scenarios should be based on solving a multi-parameter inverse seismic problem. This publication is devoted to the presentation of this approach.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Natural Gas Hydrate Occurrence and Issues;Ann. N. Y. Acad. Sci.,1994

2. Timescales and processes of methane hydrate formation and breakdown, with application to geologic systems;J. Geophys. Res. Solid Earth,2020

3. Dynamic response of oceanic hydrate deposits to ocean temperature change;J. Geophys. Res. Oceans,2008

4. Offshore permafrost decay and massive seabed methane escape in water depths 20 m at the South Kara Sea shelf;Geophys. Res. Lett.,2013

5. Evolution of subsea permafrost landscapes in Arctic Siberia since the Late Pleistocene: A synoptic insight from acoustic data of the Laptev Sea;Arktos,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green Energy Technologies: A Key Driver in Carbon Emission Reduction;Journal of Engineering and Technological Sciences;2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3