Soil Moisture Retrieval by Integrating SAR and Optical Data over Winter Wheat Fields
-
Published:2022-11-25
Issue:23
Volume:12
Page:12057
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Wang Zhaowei,Sun Shuyi,Jiang Yandi,Li Shuguang,Ma Hongzhang
Abstract
Soil moisture (SM) retrieval over agricultural fields using synthetic aperture radar (SAR) data is often hindered by the vegetation layer and soil roughness. Most SM inversion algorithms require in situ SM data for a calibration to eliminate these two disturbing factors, while collecting in situ data is a project that consumes a lot of manpower and resources. This paper aims to tentatively develop an inversion algorithm for retrieving SM in the absence of in situ SM in areas covered by winter wheat vegetation. Based on the analysis of the data set simulated by the Michigan Microwave Canopy Scattering (MIMICS) model, an improved ratio model is proposed to remove the effect of the vegetation layer. Through the parameterization of the advanced integral equation model (AIEM), the effect of the soil roughness on the inversion of soil moisture is eliminated. The spatial distribution of SM in winter wheat fields is obtained using the Sentinel-1 SAR and Sentinel-2 images. The comparison results between the inverted SM and the in situ measured data reveal a good correlation (R = 0.85, RMSE = 0.032 cm3·cm−3), and the result confirms that the algorithm developed only based on theoretical models can also effectively monitor the spatial changes of SM over winter wheat fields.
Funder
the Shandong province Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献