Performance Evaluation of Convolutional Neural Network for Multi-Class in Cross Project Defect Prediction

Author:

Noreen Sundas,Faiz Rizwan Bin,Alyahya SultanORCID,Maddeh Mohamed

Abstract

Cross-project defect prediction (CPDP) is a practical approach for finding software defects in projects which have incomplete or fewer data. Improvements to the defect prediction accuracy of CPDP—such as the PROMISE repository, the correct classification of the source data, removing the noise, reducing the distribution gap, and balancing the output classes—are an ongoing challenge, as is the selection of an optimal feature set. This research paper aims to achieve a higher defect prediction accuracy for multi-class CPDP by selecting an optimal feature set through XGBoost combined with an automatic feature extraction using a convolutional neural network (CNN). This research type is explanatory, and this research method is controlled experimentation, for which the independent variable prediction accuracy was dependent upon two variables, XGBoost and CNN. The Softmax layer was added to the output layers of the CNN classifier to classify the output into multiple classes. In our experimentation with CPDP, we selected all 28 versions of the multi-class, in which 11 versions were selected as the source projects, against which we predicted 28 target versions with an average AUC of 75.57%. We validated this research paper’s results through the Wilcoxon test. Therefore, after removing the noise, class imbalances, and the data distribution gap, and treating the PROMISE dataset as multi-class, the optimal features selected through XGBoost and classified through the CNN can substantially increase the prediction accuracy in CPDP as evident from our exploratory data analysis (EDA).

Funder

Deanship of Scientific Research at King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Few-Shot Learning Based Balanced Distribution Adaptation for Heterogeneous Defect Prediction;Wang;IEEE Access,2020

2. Defect prediction from static code features: Current results, limitations, new approaches;Menzies;Autom. Softw. Eng.,2010

3. Software Defect Prediction Based on Non-Linear Manifold Learning and Hybrid Deep Learning Techniques;Nana;Comput. Mater. Contin.,2020

4. Within-project and cross-project software defect prediction based on improved transfer naive bayes algorithm;Zhu;Comput. Mater. Contin.,2020

5. Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-objective Optimization;Nana;Comput. Mater. Contin.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3