Mechanism of Roof Deformation and Support Optimization of Deeply Buried Roadway under Mining Conditions

Author:

Liu Yanqing,Zheng Pengqiang,Xu Liqiang,Li Wenjing,Sun Yueqi,Sun Weiwei,Yuan Zhen

Abstract

Large deformations in local areas during service in a mine roadway are prone to roofing hazards, seriously threatening people’s lives and urgently needing to be addressed by means of support optimization. Traditional methods of studying the stability of the roadway roof are mainly based on the theory of the surrounding rock loosening circle, but few studies analyze the stability of roadway roofs around the failure distribution and expansion of weak interlayers. Therefore, the relationship between the deformation characteristics of the tunnel envelope and the thickness of the soft and weak interlayer and the underlying hard rock layer was investigated using a comprehensive research method such as theoretical analysis, numerical simulation, and field monitoring. The results show that the form of roadway roof failure is determined by weak interlayer thickness. For a mining-disturbed roadway, if the weak interlayer thickness remains unchanged, as the underlying hard strata thickness increases, the existence of a more integral hard stratum cannot prevent plastic zones from forming in the weak interlayer but can prevent them from developing in the key layer 1. If the underlying hard strata thickness remains unchanged, the smaller the weak interlayer thickness, the smaller the area of plastic zone failure in the roadway roof. After the deformation characteristics of the roadway containing the weak interlayer were clarified, according to its characteristics, the support optimization method of increasing the length of anchor bolt and anchor cable is proposed. The displacement of the roadway roof was reduced by 35% after verification by numerical simulation. After applying the support optimization method on site, the roadway displacement basically stabilized after 40 days, with the roof slab sinkage, two gang convergence and bottom bulge reaching 53 mm, 42 mm and 39 mm, respectively. The overall deformation of the roadway was small, effectively controlling the surrounding rock deformation and reducing economic losses for the mine.

Funder

the National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Study on the stress distribution and damage characteristics of roadway roof in interbed rock mass;Chen;J. Undergr. Space Eng.,2022

2. Study on instability of roof roadway based on orthogonal test;Zhong;J. China Univ. Min. Technol.,2015

3. Principle and application of cascade support mechanics of thick layer soft composite roof coal roadway;Gao;J. China Univ. Min. Technol.,2011

4. Numerical analysis of surrounding rock stability of weak sandwich roadway under dynamic disturbance;Tang;J. Min. Saf. Eng.,2016

5. Study on Support Technology of Dynamic Pressure Roadway Support in Soft and Weak Interlayer Composite Roof;Ren;Coal Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3