Experimental and Computational Vibration Analysis for Diagnosing the Defects in High Performance Composite Structures Using Machine Learning Approach

Author:

Jakkamputi LakshmipathiORCID,Devaraj Saravanakumar,Marikkannan Senthilkumar,Gnanasekaran SakthivelORCID,Ramasamy Sivakumar,Rakkiyannan JegadeeshwaranORCID,Xu YigengORCID

Abstract

Delamination in laminated structures is a concern in high-performance structural applications, which challenges the latest non-destructive testing techniques. This study assesses the delamination damage in the glass fiber-reinforced laminated composite structures using structural health monitoring techniques. Glass fiber-reinforced rectangular laminate composite plates with and without delamination were considered to obtain the forced vibration response using an in-house developed finite element model. The damage was diagnosed in the laminated composite using machine learning algorithms through statistical information extracted from the forced vibration response. Using an attribute evaluator, the features that made the greatest contribution were identified from the extracted features. The selected features were further classified using machine learning algorithms, such as decision tree, random forest, naive Bayes, and Bayes net algorithms, to diagnose the damage in the laminated structure. The decision tree method was found to be a computationally effective model in diagnosing the delamination of the composite structure. The effectiveness of the finite element model was further validated with the experimental results, obtained from modal analysis using fabricated laminated and delaminated composite plates. Our proposed model showed 98.5% accuracy in diagnosing the damage in the fabricated composite structure. Hence, this research work motivates the development of online prognostic and health monitoring modules for detecting early damage to prevent catastrophic failures of structures.

Funder

Vellore Institute of Technology (VIT) Chennai under VIT SEED GRANT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3