Abstract
The safe operation of dams is related to the lifeline of the national economy, the safety of the people, and social stability, and dam safety monitoring plays an essential role in scientifically controlling the safety of dams. Since the effects of environmental variables were not considered in conventional monitoring data repairing methods (such as the single time series model and spatial interpolation model), a spatial model for repairing monitoring data combining the variable importance for projection (VIP) method and cokriging was put forward in this paper. In order to improve the accuracy of the model, the influence of different combinations of covariates on it was discussed, and the VIPj value greater than 0.8 was proposed as the threshold of covariates. The engineering verification shows that the VIP-cokriging spatial model had the advantages of high precision and strong applicability compared with the inverse distance weighting (IDW) model, the ordinary kriging model, and the universal kriging model, and the overall error can be reduced by more than 60%, which could better realize the expansion of the monitoring effect variable to the whole area of the dam space. The engineering application of the PBG dam showed that the model scientifically correlated the existing monitoring points with the spatial location of the dam, and reasonably repaired the measured values of the stopping and abnormal measured points, effectively ensuring that the spatial regular of the monitoring data could truly reflect the actual safety and operational status of the dam.
Funder
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献