Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles

Author:

Vykhodets Vladimir B.,Kurennykh Tatiana E.,Vykhodets Evgenia V.

Abstract

Oxide nanopowders are widely used in engineering, and their properties are largely controlled by the defect structure of nanoparticles. Experimental data on the spatial distribution of defects in oxide nanoparticles are unavailable in the literature, and in the work presented, to gain such information, methods of nuclear reactions and deuterium probes were employed. The object of study was oxygen-deficient defects in TiO2 nanoparticles. Nanopowders were synthesized by the sol–gel method and laser evaporation of ceramic targets. To modify the defect structure in nanoparticles, nanopowders were subjected to vacuum annealings. It was established that in TiO2 nanoparticles there form two-dimensional defects consisting of six titanium atoms that occupy the nanoparticle surface and result in a remarkable deviation of the chemical composition from the stoichiometry. The presence of such defects was observed in two cases: in TiO2 nanoparticles alloyed with cobalt, which were synthesized by the sol–gel method, and in nonalloyed TiO2 nanoparticles synthesized by laser evaporation of ceramic target. The concentration of the defects under study can be varied in wide limits via vacuum annealings of nanopowders which can provide formation on the surface of oxide nanoparticles of a solid film of titanium atoms 1–2 monolayers in thickness.

Funder

state assignment of the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3