Prediction of Friction Coefficient for Ductile Cast Iron Using Artificial Neural Network Methodology Based on Experimental Investigation

Author:

Khalaf Ahmad A.ORCID,Hanon Muammel M.ORCID

Abstract

The key objective of the present study is to analyze the friction coefficient and wear rate for ductile cast iron. Three different microstructures were chosen upon which to perform the experimental tests under different sliding time, load, and sliding speed conditions. These specimens were perlite + ferrite, ferrite, and bainitic. Moreover, an artificial neural network (ANN) model was developed in order to predict the friction coefficient using a set of data collected during the experiments. The ANN model structure was made up of four input parameters (namely time, load, number, and nodule diameter) and one output parameter (friction coefficient). The Levenberg–Marquardt back-propagation algorithm was applied in the ANN model to train the data using feed-forward back propagation (FFBP). The results of the experiments revealed that the coefficient of friction reduced as the sliding speed increased under a constant load. Additionally, it exhibits the same pattern of action when the test is run with a heavy load and constant sliding speed. Additionally, when the sliding speed increased, the wear rate dropped. The results also show that the bainite structure is harder and wears less quickly than the ferrite structure. Additionally, the results pertaining to the ANN structure showed that a single hidden layer model is more accurate than a double hidden layer model. The highest performance in the validation stage, however, was observed at epochs 8 and 20, respectively, for a double hidden layer and at 0.012346 for a single layer at epoch 20.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Tribological Performance of Gray Cast Iron by Laser Surface Texturing of Micro-grooves and Micro-crosshatches;Journal of Materials Engineering and Performance;2024-07-25

2. Modelling of Shear Strength of Single Lap Adhesive Joints using Neural Networks;2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2024-06-03

3. Modelling of Selected Surface Roughness Parameters using ANN in Waterjet Cutting;2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2024-06-03

4. Exploring New Parameters to Advance Surface Roughness Prediction in Grinding Processes for the Enhancement of Automated Machining;Journal of Manufacturing and Materials Processing;2024-02-14

5. On the determination of the friction-caused energy losses and its potential for monitoring industrial tribomechanical systems;The International Journal of Advanced Manufacturing Technology;2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3