An Improved Self-Born Weighted Least Square Method for Cylindricity Error Evaluation

Author:

Yao YunhanORCID,Zhang Ke

Abstract

In order to improve the stability of the evaluation results and the gross error resistance of the algorithm in view of the widespread gross errors in geometric error evaluation, an improved self-born weighted least square method (ISWLS) is proposed in this paper. First, the nonlinear cylindrical axial model is linearized to establish the error equation of the observed values. We use the conditional equations of the independent observations found as valid information to derive the weights of the observations. The weights of the observations are subjected to least-square iteration to calculate the error values and equation parameters. Meanwhile, the ordinal numbers of the independent sets of equations in the observed equations are updated several times. By updating the ordinal number information of the conditional equations, the influence of gross error data on the solution of the equations is minimized. Through a series of experiments, the algorithm is proved to have a strong resistance to gross differences, and operation time is shorter. According to the evaluation results of cylindricity error, the uncertainty of cylindricity error was calculated by the Guide to the expression of uncertainty in measurement method (GUM)and the Monte Carlo method (MCM). Experiments show that the uncertainty results of the MCM method can verify the results assessed by the GUM method, which proves that the results of the ISWLS method are effective and robust.

Funder

author Y.Y.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Research of the on-line evaluating the cylindricity error technology based on the new generation of GPS;Zheng;Procedia Eng.,2017

2. Cylindricity error evaluation based on an improved harmony search algorithm;Yang;Sci. Program.,2018

3. Research on Evaluation and Uncertainty of Measurement of Circularity Errors via Neural Network Algorithm;Zhang;Mech. Sci. Technol. Aerosp. Eng.,2019

4. Cylindricity Error Evaluation Based on an Improved Genetic Algorithm;Wen;Acta Metrol. Sin.,2004

5. Probe Path Planning for Flatness Measurement on Coordinate Measuring Machine Using Ant Colony Optimization;Ambewadkar;Adv. Eng. Forum,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3