Face Gender and Age Classification Based on Multi-Task, Multi-Instance and Multi-Scale Learning

Author:

Liao HaibinORCID,Yuan Li,Wu Mou,Zhong Liangji,Jin Guonian,Xiong NealORCID

Abstract

Automated facial gender and age classification has remained a challenge because of the high inter-subject and intra-subject variations. We addressed this challenging problem by studying multi-instance- and multi-scale-enhanced multi-task random forest architecture. Different from the conventional single facial attribute recognition method, we designed effective multi-task architecture to learn gender and age simultaneously and used the dependency between gender and age to improve its recognition accuracy. In the study, we found that face gender has a great influence on face age grouping; thus, we proposed a random forest face age grouping method based on face gender conditions. Specifically, we first extracted robust multi-instance and multi-scale features to reduce the influence of various intra-subject distortion types, such as low image resolution, illumination and occlusion, etc. Furthermore, we used a random forest classifier to recognize facial gender. Finally, a gender conditional random forest was proposed for age grouping to address inter-subject variations. Experiments were conducted by using two popular MORPH-II and Adience datasets. The experimental results showed that the gender and age recognition rates in our method can reach 99.6% and 96.14% in the MORPH-II database and 93.48% and 63.72% in the Adience database, reaching the state-of-the-art level.

Funder

natural science foundation of Hubei province

innovation team of Hubei University of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3