Mechanical Models for Comparative Analysis of Failure Characteristics and Groundwater Inrush of Coal Seam Floors

Author:

Zhao Chunbo,Song WenchengORCID

Abstract

Mining activities conducted above aquifers run the risk of groundwater outburst through fractured floor strata. However, the failure mechanism of the seam floor and the variability in its stability with varying dips remain unclear. Considering the influence of excavation-induced pressure, hydraulic pressure and strata dip, two kinds of analytical models were proposed in this study, which mainly included the hydraulic mechanical model and the key stratum model. These models were applied to comparatively investigate the failure characteristics and inrush risk of horizontal and inclined floors, and then confirmed by numerical simulation. The theoretical calculations reveal that the vertical failure ranges of horizontal and inclined floor strata exhibit approximate “inverted saddle” shapes along the inclination, and have the characteristics of symmetrical distribution and “lower-large/upper-small”, respectively, which is generally consistent with the simulated and measured observations. The theoretical maximum depths of damage within horizontal and inclined floor strata are roughly 12 m and 15 m, slightly lower than the result of numerical simulation. Compared with the remaining horizontal layer, the zone close to the lower boundary of the inclined key strata beneath the goaf incurs the most damage, which corresponds well to the distribution of vertical disturbance ranges. Therefore, the theoretical risk of groundwater outburst from the inclined floor after coal extraction is relatively higher than that from the horizontal floor. The mechanical models established in this study could elucidate the mechanism inducing floor failure and water inrush above a confined aquifer, and thus provide valuable insights for the risk assessment of water-related disasters in underground engineering.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3