Experimental and Numerical Testing of Heat Pump Evaporator

Author:

Santa Robert,Bošnjaković MladenORCID,Čikić Ante

Abstract

When designing a heat pump evaporator, it is necessary to use correlations that ensure small deviations of the designed and realized process parameters for specific input data. The aim of the work is to propose a suitable mathematical model for the physical process in the tubular evaporator of the heat pump. The applicability of the proposed mathematical model in the design of the heat pump was evaluated by comparing the results obtained from the experimental tests of the tubular evaporator of the heat pump with the numerical results obtained from the application of the proposed mathematical model. For the experimental tests, a tubular evaporator was made and 10 measuring points were set up, where the process parameters were measured (temperature and pressure drop of the working media R134a and water). Theoretical results were obtained by dividing the evaporator into control volumes and solving the corresponding system of equations of the proposed mathematical model using the Runge-Kutta and Adams Moulton predictor-corrector method. As an independent parameter, the water temperature at the inlet to the evaporator was varied in the range of 10 °C to 18 °C. The test results show that the largest deviation of the calculated and measured water temperature is +0.41 °C to −0.58 °C, while the refrigerant temperature is +0.43 °C to + 0.52 °C. The largest deviation of the evaporator thermal capacity based on the calculations and experimental tests is +9.39% to −6.31%. Based on the obtained results, it is possible to recommend the use of the proposed mathematical model for the design of the tubular evaporator of a heat pump.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Theoretical analysis of the dynamic interactions of vapour-compression heat pumps;Energy Conserv. Manag.,1984

2. Prediction of cyclic heat pump performance with a fully distributed model and a comparison with experimental data;ASHRAE Trans.,1987

3. A dynamical model adequate for controlling the evaporator of heat pump;Int. J. Refrig.,1994

4. Dynamic simulation of a thermostatically controlled counter-flow evaporator;Int. J. Refrig.,2000

5. Numerical study on the steady state and transient performance of a multi-type heat pump system;Int. J. Refrig.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3