Multi-Feature Extension via Semi-Autoencoder for Personalized Recommendation

Author:

Geng YishuaiORCID,Zhu Yi,Li Yun,Sun Xiaobing,Li Bin

Abstract

Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and make quick decisions. Recently, due to the benefits of effective representation learning and no labeled data requirements, autoencoder-based models have commonly been used in recommendation systems. Nonetheless, auxiliary information that can effectively enlarge the feature space is always scarce. Moreover, most existing methods ignore the hidden relations between extended features, which significantly affects the recommendation accuracy. To handle these problems, we propose a Multi-Feature extension method via a Semi-AutoEncoder for personalized recommendation (MFSAE). First, we extract auxiliary information from DBpedia as feature extensions of items. Second, we leverage the LSI model to learn hidden relations on top of item features and embed them into low-dimensional feature vectors. Finally, the resulting feature vectors, combined with the original rating matrix and side information, are fed into a semi-autoencoder for recommendation prediction. We ran comprehensive experiments on the MovieLens datasets. The results demonstrate the effectiveness of MFSAE compared to state-of-the-art methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3