An Improved Differentiable Binarization Network for Natural Scene Street Sign Text Detection

Author:

Lu Manhuai,Leng Yi,Chen Chin-LingORCID,Tang Qiting

Abstract

The street sign text information from natural scenes usually exists in a complex background environment and is affected by natural light and artificial light. However, most of the current text detection algorithms do not effectively reduce the influence of light and do not make full use of the relationship between high-level semantic information and contextual semantic information in the feature extraction network when extracting features from images, and they are ineffective at detecting text in complex backgrounds. To solve these problems, we first propose a multi-channel MSER (Maximally Stable Extreme Regions) method to fully consider color information in text detection, which separates the text area in the image from the complex background, effectively reducing the influence of the complex background and light on street sign text detection. We also propose an enhanced feature pyramid network text detection method, which includes a feature pyramid route enhancement (FPRE) module and a high-level feature enhancement (HLFE) module. The two modules can make full use of the network’s low-level and high-level semantic information to enhance the network’s effectiveness in localizing text information and detecting text with different shapes, sizes, and inclined text. Experiments showed that the F-scores obtained by the method proposed in this paper on ICDAR 2015 (International Conference on Document Analysis and Recognition 2015) dataset, ICDAR2017-MLT (International Conference on Document Analysis and Recognition 2017- Competition on Multi-lingual scene text detection) dataset, and the Natural Scene Street Signs (NSSS) dataset constructed in this study are 89.5%, 84.5%, and 73.3%, respectively, which confirmed the performance advantage of the method proposed in street sign text detection.

Funder

National Social Science Fund of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3