Construction of the Guide Star Catalog for Double Fine Guidance Sensors Based on SSBK Clustering

Author:

Yang Yuanyu,Yin Dayi,Zhang Quan,Li Zhiming

Abstract

In the Chinese Survey Space Telescope (CSST), the Fine Guidance Sensor (FGS) is required to provide high-precision attitude information of the space telescope. The fine star guide catalog is an essential part of the FGS. It is not only the basis for star identification and attitude determination but also the key to determining the absolute attitude of the space telescope. However, the capacity and uniformity of the fine guide star catalog will affect the performance of the FGS. To build a guide star catalog with uniform distribution of guide stars and catalog capacity that is as small as possible, and to effectively improve the speed of star identification and the accuracy of attitude determination, the spherical spiral binary K-means clustering algorithm (SSBK) is proposed. Based on the selection criteria, firstly, the spherical spiral reference point method is used for global uniform division, and then, the K-means clustering algorithm in machine learning is introduced to divide the stars into several disjoint subsets through the use of angular distance and dichotomy so that the guide stars are uniformly distributed. We assume that the field of view (FOV) is 0.2° × 0.2°, the magnitude range is 9∼15 mag, and the threshold for the number of stars (NOS) in the FOV is 9. The simulation shows that compared with the magnitude filtering method (MFM) and the spherical spiral reference point brightness optimization algorithm (SSRP), the guide star catalog based on the SSBK algorithm has the lowest standard deviation of the NOS in the FOV, and the probability of 5∼15 stars is the highest (over 99.4%), which can ensure a higher identification probability and attitude determination accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Consideration for a large-scale multi-color imaging and slitless spectroscopy survey on the Chinese space station and its application in dark energy research

2. Chinese Xuntian Space Telescope to Unravel Cosmic Mysteries in 2023 https://news.cgtn.com/news/2022-05-06/Chinese-Xuntian-Space-Telescope-to-unravel-cosmic-mysteries-in-2023-19Ojkqf3iQ8/index.html

3. The Chinese Survey Space Telescope http://ilariacaiazzo.com/wp-content/uploads/2021/09/HuZhanSlides.pdf

4. Research on 12mag FGS Catalog Construction and Algorithms;Zhao;Ph.D. Thesis,2017

5. Restoration of Smeared Star Spot for Fine Guidance Sensor under Complex Dynamic Conditions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3