A Clustering-Driven Approach to Predict the Traffic Load of Mobile Networks for the Analysis of Base Stations Deployment

Author:

Mahdy Basma,Abbas HazemORCID,Hassanein Hossam,Noureldin AboelmagdORCID,Abou-zeid HatemORCID

Abstract

Mobile network traffic is increasing in an unprecedented manner, resulting in growing demand from network operators to deploy more base stations able to serve more devices while maintaining a satisfactory level of service quality. Base stations are considered the leading energy consumer in network infrastructure; consequently, increasing the number of base stations will increase power consumption. By predicting the traffic load on base stations, network optimization techniques can be applied to decrease energy consumption. This research explores different machine learning and statistical methods capable of predicting traffic load on base stations. These methods are examined on a public dataset that provides records of traffic loads of several base stations over the span of one week. Because of the limited number of records in the dataset for each base station, different base stations are grouped while building the prediction model. Due to the different behavior of the base stations, forecasting the traffic load of multiple base stations together becomes challenging. The proposed solution involves clustering the base stations according to their behavior and forecasting the load on the base stations in each cluster individually. Clustering the time series data according to their behavior mitigates the dissimilar behavior problem of the time series when they are trained together. Our findings demonstrate that predictions based on deep recurrent neural networks perform better than other forecasting techniques.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference32 articles.

1. Ericsson Mobility Report Q4 Update 2019,2020

2. Performance analysis of green cellular networks with selective base-station sleeping;Wu;Perform. Eval.,2017

3. Ericsson Mobility Report, June 2020,2020

4. Green communication in next generation cellular networks: A survey;Gandotra;IEEE Access,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3