A New Robust Method to Investigate Dynamic Instability of FTV for the Double Tripod Industrial Driveshafts in the Principal Parametric Resonance Region

Author:

Bugaru MihaiORCID,Vasile OvidiuORCID

Abstract

The present work aims to design a robust method to detect and certify the deterministic chaos or ergodic process for the forced torsional vibrations (FTV) of a double tripod industrial driveshaft (DTID) in transition through the principal parametric resonance region (PPRR) which is considered by the researchers in the field as one of the most important resonance regions for the systems having parametric excitations. The DTID’s model for FTV considers the following effects: nonuniformities of inertial characteristics of the DTID’s elements, the harmonic torque excitation induced by the asynchronous electrical motor used for a heavy-duty grain mill, and the harmonic reaction torque generated by different granulation of the substance needed to be milled. Based on these aspects, a model of the FTV for the DTID was designed which was a modified, physically consistent model already used by the authors to investigate the FTV of automotive driveshafts (homokinetic transmission). For the DTID elements, the dynamic instability for nonstationary FTV in the PPRR using time–history analysis (THA) was analyzed—THA represents the phase portraits. Time–history analysis is a detection method for possible chaotic dynamic behavior for the nonstationary FTV (NFTV) in transition through PPRR. If this dynamic behavior was seen, a new robust method LEA–PM was created to certify and confirm the deterministic chaos for the NFTV of DTID. The new method, LEA–PM, is composed of the Lyapunov exponent’s approach (LEA) coupled with the Poincaré Map (PM) applied to the global system of differential equations that describe the FTV of DTID in the PPRR. This new robust method, which embeds LEA and PM, LEA–PM, establishes if the mechanical system has a deterministic chaotic dynamic behavior (strange attractor) or an ergodic dynamic process in this resonant region. LEA represents a new method that includes not only the maximal Lyapunov exponent method (MLEM) but also new mathematical criteria that is “the sum of all Lyapunov exponents has to be negative” which, coupled with MLEM, indicates the presence of deterministic chaos (strange attractors). THA–LEA–PM had been used for the NFTV of DTID computing the phase portraits, the Lyapunov exponents, and representing the Poincaré Maps of the NFTV for the DTID’s elements in transition through PPRR, founding deterministic chaos or ergodic dynamic behavior. Based on the obtained results, numerical simulations revealed the pitting manifestations of the DTID’s elements, typical for the geared systems transmission, mentioned recently in experimental data research for the homokinetic transmissions. Using the new robust method, THA–LEA–PM (time–history analysis coupled with LEA–PM) can be used in future research for chaotic dynamic analysis of DTID’s NFTV transition through superharmonic resonances, subharmonic resonances, combination resonances, and internal resonances. Time–history analysis as a detection method for chaos and LEA–PM as a certifying method for deterministic chaos can be integrated as a design tool for DTID’s FTV control of the homokinetic transmission.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Universal Joints and Driveshafts Analysis, Design, Applications;Seherr-Thoss,2006

2. Zur Kinematik und Dynamik von Tripode-Gelenkgetrieben;Duditza,1975

3. Nonuniformity of Isometric Properties of Automotive Driveshafts

4. Kinematic analysis of the double roller tripod joint

5. Brief Review of Motor Current Signature Analysis;Miljkovic;IEEE Ind. Appl. Mag.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3