Analysis of Cavity Corner Geometry Effect on Recirculation Zone Structure

Author:

Šereika JustasORCID,Vilkinis PauliusORCID,Pedišius Nerijus

Abstract

A numerical investigation of flow topology in open-type cavities with length-to-depth ratio L/h1 = 4 was performed in the Reynolds number range of 10–1000. Cavities with differently rounded corners were chosen for simulation. Three-dimensional numerical simulations were performed to analyse flow topology in different planes. A series of experiments was performed to ensure the validity of numerical simulations. Both numerical simulations and physical experiments were conducted with water as the working fluid. Since the results agreed acceptably, further simulations were performed. The main goal of this study was to investigate and highlight the influence of rounded cavity corners on the topology and stability of flow. Analysis revealed that fully rounded upper cavity corners decrease pressure loss compared to other investigated cases; therefore, the velocity of the main flow is increased. Additionally, fully rounded upper corners form a notably smaller recirculation zone compared to other investigated cases. Flow stability analysis showed that fully rounded cavity bottom corners negatively impact flow stability by increasing the intensity of turbulence.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3