Prostaglandin D2 Attenuates Lipopolysaccharide-Induced Acute Lung Injury through the Modulation of Inflammation and Macrophage Polarization

Author:

Almatroudi AhmadORCID,Alsahli Mohammed A.ORCID,Syed Mansoor AliORCID,Khan Amjad AliORCID,Rahmani Arshad Husain

Abstract

Acute lung injury (ALI) is a well-known respiratory disease and a leading cause of death worldwide. Despite advancements in the medical field, developing complete treatment strategies against this disease is still a challenge. In the current study, the therapeutic role of prostaglandin D2 (PGD2) was investigated on lipopolysaccharide (LPS)-induced lung injury in mice models and RAW264.7 macrophages through anti-inflammatory, histopathology, immunohistochemistry, and TUNEL staining. The overproduction of cytokines by RAW264.7 macrophages was observed after stimulation with LPS. However, pretreatment with PGD2 decreased the production of cytokines. The level of inflammatory markers was significantly restored in the PGD2 treatment group (TNF-α = 58.6 vs. 78.5 pg/mL; IL-1β = 29.3 vs. 36.6 pg/mL; IL-6 = 75.4 vs. 98.2 pg/mL; and CRP = 0.84 vs. 1.14 ng/mL). The wet/dry weight ratio of the lungs was quite significant in the disease control (LPS-only treatment) group. Moreover, the histological changes as determined by haematoxylin and eosin (H&E) staining clearly showed that PGD2 treatment maintains the lung tissue architecture. The iNOS expression pattern was increased in lung tissues of LPS-treated animals, whereas, in mice treated with PGD2, the expression of iNOS protein decreased. Flow cytometry data demonstrated that LPS intoxication enhanced apoptosis, which significantly decreased with PGD2 treatment. In conclusion, all these observations indicate that PGD2 provides an anti-inflammatory response in RAW264.7 macrophages and in ALI, and they suggest a therapeutic potential in lung pathogenesis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3