Abstract
Replacement with larger diameter screws is always used in pedicle screw loosening but carries a risk of pedicle wall violation. A pedicle screw with more preserved bone stock is the preferred primary fixation choice. The purpose of this study was to evaluate whether a newly designed proximal-conical dual-thread screw with less bone occupancy provides fixation strength comparable to that of a traditional screw. Six types of pedicle screws based on three different shapes (cylindrical, conical, and proximal-conical) and two thread profiles (single-thread and dual-thread) were grouped. Conical and proximal-conical screws differed mainly in the slope of the outer diameter from the hub to the tip. Conical screws had an outer diameter (6.5 mm) that differed from the hub and tapered by 30% to an outer diameter (4.5 mm) at the tip and proximal-conical screws had the same outer diameter from the hub and tapered by 30% (4.5 mm) at 20 mm from the hub and then maintained the outer diameter (45 mm) to the tip. A total of 36 L4 Sawbones® vertebrae were used in the study and six trials for each screw group. The results of the imaging, screw volume in bone, insertion torque, and pullout force were analyzed. For screws with the same shape, insertion torque and pullout force were significantly higher for those in the dual-thread groups than for those in the single-thread groups (p < 0.05). For screws with the same thread profile, there was no significant difference in either biomechanical test between the different screw shapes (p > 0.05). Our results demonstrated that these proximal-conical dual-thread screws, with the property of relative bone stock preservation, display a comparable biomechanical performance to traditional dual-thread screws and a better performance than single-thread screws. This screw design could serve as the primary pedicle screw choice to reduce revision difficulty.
Funder
Linkou Chang Gung Memorial Hospital
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献