Jointed Rock Failure Mechanism: A Method of Heterogeneous Grid Generation for DDARF

Author:

Ma Hai-Ping,Daud Nik Norsyahariati NikORCID

Abstract

The original DDARF (discontinuous deformation analysis for rock failure) can only generate uniform grids, and the increase in the number of grids reduces the efficiency of calculation, which limits the use of DDARF in large-scale geotechnical engineering. This is a problem that needs to be solved in the original DDARF. A new method is proposed in this paper to optimize the generation of grids in DDARF, and the optimized DDARF can generate heterogeneous grids. The model of the Brazilian disc-splitting experiment was established by using the optimized DDARF, fine grids were generated in the crack propagation region of the model, andsparse grids were generated at the edge of the model. The simulation results show that the Brazilian disc-splitting experiment simulated by the optimized DDARF is more consistent with the physical experiment than the original DDARF. The optimized DDARF and the original DDARF were used to generate a heterogeneous grid model and a uniform grid model, respectively, to simulate the uniaxial compression experiment. Through the analysis of the experimental results, it can be concluded that the optimized DDARF is more accurate in simulating the cracking and propagation of joints in rock blocks, the results of optimized DDARF are more consistent with the simulation results of other software, and the computational efficiency of the optimized DDARF simulation experiment is much higher than that of the original DDARF at the same time.

Funder

Laboratory for Comprehensive Development and Utilization of Industrial Solid Waste Civil Engineering, Education Department of Sichuan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3