A Survey of Multi-Focus Image Fusion Methods

Author:

Zhou Youyong,Yu LingjieORCID,Zhi Chao,Huang Chuwen,Wang Shuai,Zhu Mengqiu,Ke Zhenxia,Gao Zhongyuan,Zhang Yuming,Fu SidaORCID

Abstract

As an important branch in the field of image fusion, the multi-focus image fusion technique can effectively solve the problem of optical lens depth of field, making two or more partially focused images fuse into a fully focused image. In this paper, the methods based on boundary segmentation was put forward as a group of image fusion method. Thus, a novel classification method of image fusion algorithms is proposed: transform domain methods, boundary segmentation methods, deep learning methods, and combination fusion methods. In addition, the subjective and objective evaluation standards are listed, and eight common objective evaluation indicators are described in detail. On the basis of lots of literature, this paper compares and summarizes various representative methods. At the end of this paper, some main limitations in current research are discussed, and the future development of multi-focus image fusion is prospected.

Funder

National Natural Science Foundation of China

Outstanding Young Talents Support Plan of Shaanxi Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3