Author:
Gao Min,Liang Zhengzhao,Jia Shanpo,Zou Jiuqun
Abstract
Rocks are less resistant to tension than to compression or shear. Tension cracks commonly initiate compression or shear failure. The mechanical behavior of layered rocks under compression has been studied extensively, whereas the tensile behavior still remains uncertain. In this paper, we study the effect of layer orientation on the strength and failure patterns of layered rocks under direct and indirect tension through experimental and numerical testing (RFPA2D: numerical software of Rock Failure Process Analysis). The results suggest that the dip angle of the bedding planes significantly affects the tensile strength, failure patterns, and progressive deformation of layered rocks. The failure modes of the layered specimens indicate that the tensile strength obtained by the Brazilian disc test is not as accurate as that obtained by the direct tension test. Therefore, the modified Single Plane of Weakness (MSPW) failure criterion is proposed to predict the tensile strength of the layered rocks based on the failure modes of direct tension. The analytical predictions of the MSPW failure criterion agrees closely with the experimental and numerical results. In rock engineering, the MSPW failure criterion can conveniently predict the tensile strength and reflect the failure modes of layered rocks (such as shale, slate, and layered sandstone) with satisfactory accuracy.
Funder
Natural Science Foundation of Anhui Province, China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献