Abstract
Internet Protocol version six (IPv6) is more secure than its forerunner, Internet Protocol version four (IPv4). IPv6 introduces several new protocols, such as the Internet Control Message Protocol version six (ICMPv6), an essential protocol to the IPv6 networks. However, it exposes IPv6 networks to some security threats since ICMPv6 messages are not verified or authenticated, and they are mandatory messages that cannot be blocked or disabled. One of the threats currently facing IPv6 networks is the exploitation of ICMPv6 messages by malicious actors to execute distributed denial of service (DDoS) attacks. Therefore, this paper proposes a deep-learning-based approach to detect ICMPv6 flooding DDoS attacks on IPv6 networks by introducing an ensemble feature selection technique that utilizes chi-square and information gain ratio methods to select significant features for attack detection with high accuracy. In addition, a long short-term memory (LSTM) is employed to train the detection model on the selected features. The proposed approach was evaluated using a synthetic dataset for false-positive rate (FPR), detection accuracy, F-measure, recall, and precision, achieving 0.55%, 98.41%, 98.39%, 97.3%, and 99.4%, respectively. Additionally, the results reveal that the proposed approach outperforms the existing approaches.
Funder
This research was supported by external research grant funded by Liwa College Of Technology (LCT), Abu Dhabi, UAE.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献