Abstract
The increasing incidence of distributed denial-of-service (DDoS) attacks has made software-defined networking (SDN) more vulnerable to the depletion of controller resources. DDoS attacks prevent the SDN controller from processing all incoming data efficiently, potentially disrupting a network or denying legitimate users access to network services. Thus, the protection of the SDN controller is crucial, especially from the ones that exploit the SDN characteristics. In this paper, the authors propose an efficient detection approach for low- and high-rate DDoS attacks on the controller with a high detection rate and a low false positive rate by adapting a dynamic threshold algorithm rather than a static one and proposing a new rule-based detection mechanism. In addition, the proposed approach was evaluated using eight simulation scenarios representing all potential attacks against the SDN controller in terms of attack traffic rates (low or high), sources (either single or multiple hosts), and targets (single or multiple victims). The experiment results show that the proposed approach is more effective than the existing approaches based on attack detection and false positive rates.
Funder
Universiti Sains Malaysia
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献