Semi-Analytical Planetary Landing Guidance with Constraint Equations Using Model Predictive Control

Author:

Miao XinyuanORCID,Cheng Lin,Song Yu,Li Junfeng,Gong Shengping

Abstract

With the deepening of planetary exploration, rapid decision making and descent trajectory planning capabilities are needed to cope with uncertain environmental disturbances and possible faults during planetary landings. In this article, a novel decoupling method is adopted, and the analytical three-dimensional constraint equations are derived and solved, ensuring real-time guidance computation. The three-dimensional motion modes and thrust profiles are analyzed and determined based on Pontryagin’s minimum principle, and a supporting semi-analytical reachability judgment method is presented, which can also be used to determine controllability. The algorithm is embedded in the model predictive control (MPC) framework, and several techniques are adopted to enhance stability and robustness, including thrust averaging, thrust correction after ignition, thrust reservation, and open-loop terminal guidance. Numerical simulations demonstrate that the proposed algorithm can guarantee real-time trajectory generation and meanwhile maintain considerable optimality. In addition, the MPC simulation shows that the algorithm can maintain a good accuracy under external disturbances.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Guidance Algorithm for Planetary Landing;2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS);2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3