A Hybrid Model Utilizing Principal Component Analysis and Artificial Neural Networks for Driving Drowsiness Detection

Author:

Huang YanwenORCID,Deng Yuanchang

Abstract

The detection of drowsiness while driving plays a vital role in ensuring road safety. Existing detection methods need to reduce external interference and sensor intrusiveness, and their algorithms must be modified to improve accuracy, stability, and timeliness. In order to realize fast and accurate driving drowsiness detection using physiological data that can be collected non-intrusively, a hybrid model with principal component analysis and artificial neural networks was proposed in this study. Principal component analysis was used to remove the noise and redundant information from the original data, and artificial neural networks were used to classify the processed data. Three other models were designed for comparison, including a hybrid model with principal component analysis and classic machine learning algorithms, a single model with artificial neural networks, and a single model with classic machine learning algorithms. The results indicated that the average accuracy of the proposed model exceeded 97%, the average training time was lower than 0.3 s, and the average standard deviation of the proposed model’s accuracy was 0.7%, indicating that the model could detect driving drowsiness more accurately and quickly than the comparison models while ensuring stability. Thus, principal component analysis can help to improve the accuracy of driving drowsiness detection. This method can be applied to active warning systems (AWS) in intelligent vehicles in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3