Development and Testing of Automatic Row Alignment System for Corn Harvesters

Author:

Geng Aijun,Hu Xiaolong,Liu Jiazhen,Mei Zhiyong,Zhang Zhilong,Yu Wenyong

Abstract

Corn harvester row alignment is a critical factor to improve harvesting quality and reduce cob drop loss. In this paper, a corn harvester automatic row alignment system is designed with a self-propelled corn combine harvester, incorporating a front-end touch row alignment mechanism of the cutting table and a harvester steering control system. Corn stalk lateral deviation from the reference row during harvesting is detected by a front-end touch-row alignment mechanism that serves as an input to the automatic alignment system. The harvester steering control system consists of Hirschmann PLC controller, electric steering wheel, steering wheel deflection angle detection device, display module and mode selection module, etc. The adaptive fuzzy PID control algorithm is used to determine the desired turning angle of the harvester steering wheel by combining with the harvester kinematic model, and the model is simulated and analyzed by Matlab/Simulink software. The automatic row alignment system was mounted on a 4LZ-8 self-propelled corn harvester for field tests, and the test results showed that the average percentage of deviation of corn stalks from the center of the row alignment cutting path within ±15 cm during the automatic row alignment process was 95.4% at harvester speeds ranging from 0 to 4.6 km/h, which could meet the requirements of the corn harvester for row alignment harvesting. The test results meet the requirements of the corn harvester for row alignment and serve as a benchmark for the research on automatic row alignment of corn harvesters.

Funder

Aijun Geng

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Research status and development trend of intelligent monitoring system for grain harvester;Zhang;J. China Agric. Chem. News,2018

2. Experiments and modeling of mechanism analysis of maize picking loss

3. Development and Evaluation of Low-Damage Maize Snapping Mechanism Based on Deformation Energy Conversion

4. In-field machine vision system for identifying corn kernel losses

5. Intra-row Path Extraction and Navigation for Orchards Based on LiDAR;Li;J. Agric. Mech.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3