Abstract
This study presents a novel current collector design for a tubular SOFC and numerically investigates its performance. The new current collector design has a flow channel with a trapezoidal shape. Several channels, such as four, eight, and twelve, are investigated, and their effects on cell performance are reported and compared. Additionally, a traditional tubular SOFC and the newly developed design are presented. The equations of mass conservation, momentum, charge transport, and energy were considered in the numerical model, and the ANSYS Fluent SOFC module was used to solve the numerical model. The results show that the developed design performed better than the traditional design. The new design with twelve channels collected 0.384 A, higher than the other designs. Although the design with twelve channels gave a high concentration of hydrogen at the outlet compared to the designs with four and eight channels, it gave higher performance than the designs with four and eight channels. Increasing the number of channels in the developed design enhanced the cell performance significantly due to the increased contact area, leading to the efficient collection of the generated current.
Funder
King Abdulaziz University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献