A Semantic Model in the Context of Maintenance: A Predictive Maintenance Case Study

Author:

May GokanORCID,Cho SangjeORCID,Majidirad AmirHosseinORCID,Kiritsis DimitrisORCID

Abstract

Advanced technologies in modern industry collect massive volumes of data from a plethora of sources, such as processes, machines, components, and documents. This also applies to predictive maintenance. To provide access to these data in a standard and structured way, researchers and practitioners need to design and develop a semantic model of maintenance entities to build a reference ontology for maintenance. To date, there have been numerous studies combining the domain of predictive maintenance and ontology engineering. However, such earlier works, which focused on semantic interoperability to exchange data with standardized meanings, did not fully leverage the opportunities provided by data federation to elaborate these semantic technologies further. Therefore, in this paper, we fill this research gap by addressing interoperability in smart manufacturing and the issue of federating different data formats effectively by using semantic technologies in the context of maintenance. Furthermore, we introduce a semantic model in the form of an ontology for mapping relevant data. The proposed solution is validated and verified using an industrial implementation.

Funder

European Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interoperable Information Flow as Enabler for Efficient Predictive Maintenance;Analytics;2024-02-01

2. A graph-based approach for integrating massive data in container terminals with application to scheduling problem;International Journal of Production Research;2024-01-30

3. A real-time semantic based approach for modeling and reasoning in Industry 4.0;International Journal of Information Technology;2023-12-14

4. Unlocking the Power of Semantic Interoperability in Industry 4.0: A Comprehensive Overview;Knowledge Graphs and Semantic Web;2023

5. Enhancing Interoperability of Digital Twin in the Maintenance phase of Lifecycle;2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE);2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3