Remote Sensing and Field Measurements for the Analysis of the Thermal Environment in the “Bosco Verticale” Area in Milan City

Author:

Kalogeropoulos Georgios1,Tzortzi Julia2ORCID,Dimoudi Argiro1ORCID

Affiliation:

1. Department of Environmental Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece

2. Department ABC Architecture, Built Environment and Construction Engineering, 20133 Milano, Italy

Abstract

The trend of urbanization nowadays has caused serious issues related to climate. One of the most important ones is that of the ‘Urban Heat Island (UHI)’ and it occurs in major cities throughout the world. The most important categories, and therefore the most studied ones, are the canopy urban heat island (CUHI) and surface heat island (SUHI). The aim and the novelty of the current study was to assess different remote sensing approaches to detect the thermal environment of an open area inside a large city. The study was undertaken in an urban area with green spaces, in the Bosco Verticale area in the city of Milan, during the spring and summer period of 2021. The area is characterized by different types of cover materials, which were investigated in terms of surface temperature under shaded and non-shaded conditions. Both field measurements and remote sensing techniques were applied. Remote sensing techniques included downscaling techniques and the usage of different split-window algorithms applied on the Landsat8 satellite sensor data. The land surface temperature (LST) extracted from remote sensing methods was compared with the surface temperature derived from in situ measurements. For the needs of the study, both in situ measurements and the collection of meteorological data from different fixed meteorological stations throughout the city of Milan were carried out. The results revealed the significance of greenery presence inside the urban environment, as a comparison of the meteorological data across the urban area of Milan showed that the areas with a low presence of greenery were found to be warmer than those with a higher presence of green elements. Concerning the field measurements in the study area, the results showed a significant reduction in both surface and air temperature in shaded places. On the other hand, the presence of conventional artificial materials in sunny areas led to relatively high values of both surface and air temperature. The downscaling method showed satisfying results in terms of average LST values; however, some discrepancies appeared in terms of the RMSE index. The application of split-window algorithms has shown that some forms of the ‘Generalized split-window algorithm’ and some forms of the ‘Jimenez-Munoz algorithm’ presented better performance among the studied algorithms. Comparing the LST values derived from the most representative algorithm, the ‘Du, Wan algorithm’, with those derived from downscaling methods, it was found to be quite close. However, under shaded conditions, the results derived from the ‘Split-window algorithm’ were found to be more precise. The application of remote sensing techniques in microscale in urban regions should be further studied in future, as they could be an essential tool for observing microclimatic conditions in urban areas and on building scale.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3