Soil Loss Estimation by Water Erosion in Agricultural Areas Introducing Artificial Intelligence Geospatial Layers into the RUSLE Model

Author:

Samarinas Nikiforos1ORCID,Tsakiridis Nikolaos1ORCID,Kalopesa Eleni1ORCID,Zalidis George12ORCID

Affiliation:

1. Spectra Lab Group, Laboratory of Remote Sensing, Spectroscopy, and GIS, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Interbalkan Environment Center, 18 Loutron Str., 57200 Lagadas, Greece

Abstract

The existing digital soil maps are mainly characterized by coarse spatial resolution and are not up to date; thus, they are unable to support the physical process-based models for improved predictions. The overarching objective of this work is oriented toward a data-driven approach and datacube-based tools (Soil Data Cube), leveraging Sentinel-2 imagery data, open access databases, ground truth soil data and Artificial Intelligence (AI) architectures to provide enhanced geospatial layers into the Revised Universal Soil Loss Equation (RUSLE) model, improving both the reliability and the spatial resolution of the final map. The proposed methodology was implemented in the agricultural area of the Imathia Regional Unit (northern Greece), which consists of both mountainous areas and lowlands. Enhanced soil maps of Soil Organic Carbon (SOC) and soil texture were generated at 10 m resolution through a time-series analysis of satellite data and an XGBoost (eXtrene Gradinent Boosting) model. The model was trained by 84 ground truth soil samples (collected from agricultural fields) taking into account also additional environmental covariates (including the digital elevation model and climatic data) and following a Digital Soil Mapping (DSM) approach. The enhanced layers were introduced into the RUSLE’s soil erodibility factor (K-factor), producing a soil erosion layer with high spatial resolution. Notable prediction accuracy was achieved by the AI model with R2 0.61 for SOC and 0.73, 0.67 and 0.63 for clay, sand, and silt, respectively. The average annual soil loss of the unit was found to be 1.76 ton/ha/yr with 6% of the total agricultural area suffering from severe erosion (>11 ton/ha/yr), which was mainly found in the mountainous border regions, showing the strong influence of the mountains in the agricultural fields. The overall methodology could strongly support regional decision making and planning and environmental policies such as the European Common Agricultural Policy (CAP) and the Sustainable Development Goals (SDGs).

Funder

European Union’s Caroline Herschel Framework Partnership Agreement on Copernicus User Uptake

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3