Study of a Methodology for Calculating Contact Stresses during Blade Processing of Structural Steel

Author:

Kozlov Victor1,Babaev Artem2ORCID,Schulz Nikita2,Semenov Artem2,Shevchuk Anton2

Affiliation:

1. Division for Mechanical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia

2. Scientific and Educational Center “Additive Technologies”, National Research Tomsk State University, 634050 Tomsk, Russia

Abstract

The article presents data about the distribution of contact stresses on the rake surface of the cutter when turning steel (Fe-0.4 C-1Cr), which were obtained by the split cutter method. The article also provides graphs of the effect of the uncut chip thickness a and the rake angle γ on the main parameters of the plots of shear τ and normal σ contact stresses. For this case, The initial data were obtained by longitudinal turning of a steel workpiece with the measurement of the technological components of the cutting force by a three-component Kistler dynamometer, followed by the calculation of the physical components of the cutting force. The rake angle varied widely, from +35 to −10°, and the uncut chip thickness a varied from 0.05 to 0.37 mm. A decrease in the rake angle from +35 to −10° leads to a significant increase in the maximum normal contact stress at the cutting edge σmax: from 400 to 1400 MPa with the uncut chip thickness a = 0.37 mm. In the area of small uncut chip thickness, a (less than 0.1 mm), the paradoxical increase in the magnitude of the greatest normal contact stress with a large positive rake angle (more than +15°) is explained by the indentation (pressing) of the being machined material under the rounded cutting edge of the cutter in the chip formation zone, and their paradoxical decrease with a negative rake angle is due to the presence of a sag (deflection) of the transient surface. According to the magnitude of the reference points obtained on the basis of experimental data, it is possible to plot the contact stresses epures on the rake surface of the cutting tools when machining steel.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3