Efficiency and Power Loss Distribution in a High-Frequency, Seven-Level Diode-Clamped Inverter

Author:

Stala Robert1ORCID,Folmer Szymon1ORCID,Penczek Adam1,Hachlowski Jakub2ORCID,Mikoś Zbigniew1ORCID

Affiliation:

1. Department of Power Electronics and Energy Control Systems, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

2. SMA-Magnetics Sp. z o.o., ul. Komandosow 3/1, 32-085 Modlniczka, Poland

Abstract

The paper presents efficiency and power loss analysis in a high-frequency, seven-level diode-clamped inverter (7LDCB). The inverter is composed of four-level (4L) diode-clamped branches based on MOSFET transistors and Si Schottky diodes. The range of DC-link voltages enables the operation of the inverter in connection with a single-phase power grid. The tested inverter can be controlled using various modulation concepts that affect its parameters, but also energy losses. Carrier-based modulation, which may be useful in a few applications, is compared to selective modulation based on the state machine (SM-based) algorithm. The article demonstrates the efficiency level of the inverter as well as the influence of the modulation method and switching frequency on the efficiency and loss distribution in semiconductor devices. The article also shows the hardware implementation of a complex modulation algorithm based on selective switching states used to maintain voltage balance on three DC-link capacitors. Redundant switching states allow the generation of the same voltage but with the use of a selected DC-link capacitor. This makes it possible to balance the DC-link voltage with the load current. The article presents experimental results, which show the advantage of using the modulation method with selective switching states. First, it allows for equalizing the loading of DC-link capacitors. The second advantage is a more uniform distribution of losses in semiconductor components.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3