Shell Shape Influence on Latent Heat Thermal Energy Storage Performance during Melting and Solidification

Author:

Wołoszyn Jerzy1ORCID,Szopa Krystian1ORCID

Affiliation:

1. AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, al. A. Mickiewicz 30, 30-059 Krakow, Poland

Abstract

Phase-change materials have various applications across industries from thermal energy storage through automotive battery temperature management systems to thermal stabilisation. Many of these applications are shell and tube structures with different shell shapes. However, it is not yet known how the shape of the shell affects the melting, solidification times, and heat transport processes in such structures. To fill this research gap, seventeen shell shapes/orientations were compared using a simulation study. The well-known and validated enthalpy porosity algorithm implemented in the Fluent 2021R2 software was used. The numerical calculations were preceded by the measurement of thermal conductivity, phase change enthalpy, and specific heat during melting and solidification of the phase-change material. The shortest melting time was achieved for a semi-circular shell shape in the downward position, which was 44% shorter than the reference circular case. The shortest solidification times were recorded for an isosceles trapezium in an upward orientation relative to the reference circular case. Therefore, it is possible to significantly reduce the melting time in shell-and-tube systems as a result of the appropriate selection of the shell shape.

Funder

Poland national subvention

Polish high-performance computing infrastructure PLGrid

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3