Numerical Simulation of Environmental Characteristics of Containment in Severe Accident of Marine Nuclear Power Plant

Author:

Xu Zhiyong1ORCID,Liu Jialei1,Chen Yuqing1,Li Ang1

Affiliation:

1. College of Nuclear Science and Technology, Naval University of Engineering, Wuhan 430033, China

Abstract

With the reliance on ocean resources, the nuclear power powers have set their sights on marine nuclear power plants to break through the bottleneck of energy supply for the development of ocean resources. In this paper, the computational fluid dynamics software ANSYS CFX 2021 is used to simulate the TOSQAN benchmark experiment. Three different turbulence models, the k−ε model, RNG k−ε model, and SST model, are selected to analyze the adaptability of the turbulence model. The simulation results are compared with the benchmark experimental results, and the selected numerical calculation model is used to analyze the influence of vapor on the pressure, temperature, hydrogen distribution, and hydrogen risk in the containment space when a hypothetical serious accident occurs in a marine nuclear power plant. The results show that the results simulated with the k−ε turbulence model are closer to the benchmark experimental results. Vapor has no obvious effect on the response speed of pressure balance at each position in the closed containment space, and the condensation of the vapor wall can effectively reduce the pressure peak in the closed containment space. The existence of vapor and the increase in vapor concentration will increase the temperature in the closed containment space. The condensation of vapor on the wall surface will cause the temperature in the containment space to have a peak value, which can effectively reduce the temperature in the containment space. Vapor will promote the mixing of gas in the containment space and make the hydrogen distribution tend to be uniform. The presence of vapor and the increase in vapor concentration can reduce the hydrogen risk in the containment space, but the condensation of vapor may increase the hydrogen risk in the containment space.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3