Hydrogen Cooling of Turbo Aggregates and the Problem of Rotor Shafts Materials Degradation Evaluation

Author:

Balitskii Alexander I.12ORCID,Syrotyuk Andriy M.1,Havrilyuk Maria R.1,Balitska Valentina O.3,Kolesnikov Valerii O.14,Ivaskevych Ljubomyr M.1ORCID

Affiliation:

1. Department of Strength of the Materials and Structures in Hydrogen-Containing Environments, Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 5 Naukova Str., 79601 Lviv, Ukraine

2. Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 19 Piastow Av., 70-310 Szczecin, Poland

3. Department of Physics and Chemistry of Combustion, Lviv State University of Life Safety, 35 Kleparivska, 79000 Lviv, Ukraine

4. Department of Production Technology and Professional Education, Taras Shevchenko National University of Lugansk, Kovalya Str. 3, 36000 Poltava, Ukraine

Abstract

Changes in the properties of 38KhN3MFA steel, from which the rotor shaft is made, were investigated by comparing the hardness of the shaft surface and hydrogen concentration in the chips and analyzing changes in the morphology of the chips under the influence of various factors. The microstructures obtained from the surface of the rotor shaft samples are presented, and histograms reflecting the parameters of the structural components are constructed. An abbreviated diagram of the “life cycle” of the turbine rotor shaft is given. It was found that, during long-term operation (up to 250 thousand hours), the hardness of the rotor shaft surface decreases from 290 HB to 250 HB. It was recorded that, in the microstructure of the shaft during 250 thousand hours of operation, the amount of cementite decreased from 87% to 62%, and the proportion of free ferrite increased from 5% to 20%. The average values of ferrite microhardness decreased from 1.9 GPa to 1.5 GPa. An increase in the content of alloying elements in carbides was recorded: Cr and V—by 1.15–1.6 times; and Mo—by 2.2–2.8 times. With the help of the developed program (using computer vision methods), changes in their microrelief were detected to study photos of chips.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3