Optimization of a Marker Gas for Analyzing and Predicting the Spontaneous Combustion Period of Coking Coal

Author:

Lu Peizhong12,Huang Yuxuan3,Jin Peng1,Yang Shouguo4,Wang Man1,Wang Xiaochuan3ORCID

Affiliation:

1. State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, China Pingmei Shenma Group, Pingdingshan 467000, China

2. Kaifeng Pingmei New Carbon Materials Technology Co., Ltd., Kaifeng 475002, China

3. Industrial Science Institute, Wuhan University, Wuhan 430072, China

4. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

The adequate assessment of the spontaneous combustion and oxidation characteristics of coking coal can help to reduce its spontaneous combustion potential. In this study, the natural ignition period of the Hex coking coal seam at Ping Coal was calculated based on the programmed-temperature-rise test and the thermal property parameters measured during the spontaneous combustion of the coal. Typical gas concentrations were measured at different oxygen concentrations and coal particle sizes to investigate the changes in the oxygen, carbon–oxygen, and hydrocarbon gas concentrations during the low-temperature oxidation of the coking coal and to determine the indicator gases at different oxidation stages. The following results were obtained: The minimum critical oxygen concentration required for spontaneous ignition was 8%, and fire prevention measures should be implemented below 200 °C. When the temperature of the coal sample reaches 50–60 °C, the rates of CO and CO2 production increase, and when the temperature of the coal sample reaches 100–120 °C, the spontaneous combustion and oxidation of the coal generates alkane gas, in which the coal particle size has a negligible effect on the concentration of each generated gas. CO and C2H4 were selected as the indicator gases for different coking coal oxidation stages, and C2H6 and the C2H4/C2H6 ratio were used as secondary indicators to assist in the analysis. Utilizing the enhanced mathematical model for the shortest spontaneous combustion period of coal seams, in conjunction with a programmed-temperature test device, experimental calculations were conducted to determine the adiabatic spontaneous combustion period. The results indicate that the natural ignition period for the Hex coking coal seam at Ping Coal is approximately 60 days, representing a brief timeframe, and the coal seam is characterized by a high risk of spontaneous combustion.

Funder

Open Research Fund of the State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, China Pingmei Shenma Group

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3