A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium–Ion Batteries in a Sealed Chamber during Thermal Runaway

Author:

Li Cheng1,Wang Hewu1ORCID,Shi Chao2,Wang Yan3ORCID,Li Yalun14,Ouyang Minggao1

Affiliation:

1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

2. College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China

3. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

4. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China

Abstract

The venting event of thermal runaway has attracted public attention due to safety issues aroused by frequent fire accidents of new energy vehicles. However, the quantitative description of venting behavior is incomplete for tests in a sealed chamber due to the initial violent injection. In this study, nine types of batteries covering 28 cases in total were employed to investigate the influence of energy density, ambient temperature, pressure, and SOC on the venting behavior, characterized by normalized gas amount; maximum gas releasing rate; and venting durations t50, t90, t95, and t99. Then, a ‘two-point’ fitting method was proposed to modify outcomes concerning real-time gas amounts. The results show that at 100% SOC, the normalized gas amount ranges within 0.075–0.105 mol/Ah for NCM batteries and 0.025–0.035 mol/L for LFP batteries, while the maximum gas releasing rate presents a strongly positive correlation with the capacity of NCM batteries (0.04–0.31 mol/s) and a slight increase for LFP batteries (0.02–0.06 mol/s). Eventually, the three venting patterns were summarized and advanced according to the energy density and SOC of the targeted battery. This research can provide a reference for risk evaluations of the venting process and safety design for structure and pressure relief in battery systems.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

Shandong Province Science and Technology Foundation

Joint Science Foundation of Guangdong Province

Open-end Funds from the State Key Laboratory of Automobile Safety and Energy Conservation from Tsinghua University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3