Global Decarbonization: Current Status and What It Will Take to Achieve Net Zero by 2050

Author:

Lau Hon Chung12ORCID,Tsai Steve C.1

Affiliation:

1. Low Carbon Energies LLC., Bellaire, TX 77401, USA

2. Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA

Abstract

A review of global CO2 emissions over the last century shows that emissions from 80 economies contributed to 95% of global emissions. Among them, 55 economies were decarbonizers, where CO2 emissions had either plateaued or were declining, while 25 economies were polluters, where CO2 emissions were still increasing. In 2021, the global CO2 emissions were 37.1 Gtpa, with 56% coming from polluters and 39% from decarbonizers. If current trends continue, global CO2 emissions will reach 49.6 Gtpa by 2050, with 81% coming from polluters and 14% from decarbonizers. Only 14 economies will reach net zero. The decarbonization target, over and above current efforts, to achieve net zero is calculated for each economy. Decarbonizers need to mitigate 230 Mtpa CO2 and polluters 1365 Mtpa CO2 beginning in 2021 to reach the net-zero target by 2050. This target will increase each year decarbonization is delayed. Analyses show that renewable energies’ share in the total final energy consumption in most economies increased by an average of only 4 percentage points in the last decade, which is inadequate for achieving net zero by 2050. Other means of decarbonization, including low-carbon fossil solutions through carbon capture and storage, will be needed. Pathways to accelerate decarbonization are proposed and their policy implications are discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference99 articles.

1. (2023, November 18). The Paris Agreement. United Nations. Available online: https://www.un.org/en/climatechange/paris-agreement.

2. (2023, March 21). Climate Change: Atmospheric Carbon Dioxide. NOAA, Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.

3. (2023, March 21). Climate Change: Evidence and Causes. Royal Society. Available online: https://royalsociety.org/topics-policy/projects/climate-change-evidence-causes/basics-of-climate-change/.

4. (2023, March 21). Home—Climate Science, Risk & Solutions. Available online: https://climateprimer.mit.edu/.

5. Irreversible Climate Change Due to Carbon Dioxide Emissions;Solomon;Proc. Natl. Acad. Sci. USA,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3