Research on High-Frequency Information-Transmission Method of Smart Grid Based on CNN-LSTM Model

Author:

Chen XinORCID

Abstract

In order to solve the problem of the slow transmission rate of high-frequency information in smart grid and improve the efficiency of information transmission, a research method of high-frequency information transmission in smart grids based on the CNN-LSTM model is proposed. It effectively combines the superiority of the CNN algorithm for high-frequency information feature extraction and the learning ability of the LSTM algorithm for global features of high-frequency information. Meanwhile, the client buffer is divided by the VLAN area division method, which avoids the buffer being too large due to line congestion. The intelligent control module is adopted to change the traditional control concept. In addition, the neural network optimization control module is used for intelligent control, which ensures the feedback speed of the control terminal and avoids the problem of increasing the buffer area caused by the feedback time difference. The experimental results show that via the method in this paper, the total efficiency of single-channel transmission reaches 96% and the transmission rate reaches 46 bit/s; the total efficiency of multiplex transmission is 89% and the transmission rate reaches 75 bit/s. It is verified that the method proposed in this paper has a fast transmission rate and high efficiency.

Publisher

MDPI AG

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECLSTM: An Efficient Channel Attention-based Spatio-temporal Fusion Method for Fault Detection of Instruments;2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2023-02-24

2. An improved ELM-WOA–based fault diagnosis for electric power;Frontiers in Energy Research;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3