Author:
Li ,Nie ,Tian ,Zhao ,Zhang
Abstract
The diffusion coefficient of gases in coal varies with time. This study aims to develop an unsteady dynamic diffusion (UDD) model based on the decay of diffusion coefficient with time and the change of integral. This study conducted a series of gas desorption and diffusion experiments with three different combinations of particle sizes and gas pressures and compared the diffusion coefficients of the three models. The UDD model exhibited good fitting results, and both the UDD and bidisperse models fitted the experimental data better than the unipore model. In addition, the dynamic diffusion coefficient (DDe) decreased rapidly in the initial stage but gradually decreased to a stable level in the later stage. All the effective diffusion coefficients of the three models negatively correlated with the particle size. In the unipore model, the diffusion coefficient of coal samples with three particle sizes increased with gas pressure. In the bidisperse and UDD models, the diffusion coefficients (Dae, Die, and DDe) of 0.25–0.5 mm and 0.5–1.0 mm coal samples increased with gas pressure. However, DDe and Dae of 1.0–1.25 mm coal samples increased first and then decreased. Furthermore, Die decreased first and then increased, with no sign of significant pressure dependence. Finally, the correlation and significance between the constant and diffusion coefficient in the UDD model was investigated.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献