What Links Chronic Kidney Disease and Ischemic Cardiomyopathy? A Comprehensive Bioinformatic Analysis Utilizing Bulk and Single-Cell RNA Sequencing Data with Machine Learning

Author:

Yang Lingzhi1,Chen Yunwei2,Huang Wei1

Affiliation:

1. Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2. Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

Abstract

Chronic kidney disease (CKD) emerges as a substantial contributor to various cardiovascular disorders, including ischemic cardiomyopathy (ICM). However, the underlying molecular mechanisms linking CKD and ICM remain elusive. Our study aims to unravel these connections by integrating publicly available bulk and single-cell RNA sequencing (scRNA-seq) data. Expression profiles from two ICM datasets obtained from heart tissue and one CKD with Peripheral Blood Mononuclear Cell (CKD-PBMC) dataset were collected. We initiated by identifying shared differentially expressed genes (DEGs) between ICM and CKD. Subsequent functional enrichment analysis shed light on the mechanisms connecting CKD to ICM. Machine learning algorithms enabled the identification of 13 candidate genes, including AGRN, COL16A1, COL1A2, FAP, FRZB, GPX3, ITIH5, NFASC, PTN, SLC38A1, STARD7, THBS2, and VPS35. Their expression patterns in ICM were investigated via scRNA-seq data analysis. Notably, most of them were enriched in fibroblasts. COL16A1, COL1A2, PTN, and FAP were enriched in scar-formation fibroblasts, while GPX3 and THBS2 showed enrichment in angiogenesis fibroblasts. A Gaussian naïve Bayes model was developed for diagnosing CKD-related ICM, bolstered by SHapley Additive exPlanations interpretability and validated internally and externally. In conclusion, our investigation unveils the extracellular matrix’s role in CKD and ICM interplay, identifies 13 candidate genes, and showcases their expression patterns in ICM. We also constructed a diagnostic model using 13 gene features and presented an innovative approach for managing CKD-related ICM through serum-based diagnostic strategies.

Funder

National Natural Science Foundation of China

CQMU Program for Youth Innovation in Future Medicine

Chongqing Natural Science Foundation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3