An Experimental Study on the Flash Boiling Characteristics of Liquid Ammonia Spray in a Constant Volume Chamber under High Injection Pressure

Author:

He Haibin1ORCID,Wu Jie1,Wang Lei1,Lou Hua1,Li Songfeng1,Huang Lvmeng2,Chen Zhanming12

Affiliation:

1. Ningbo C.S.I. Power & Machinery Group Co., Ltd., Ningbo 315020, China

2. Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, Chang’an University, Xi’an 710064, China

Abstract

The spray characteristics of liquid ammonia under various ambient pressures and temperatures were analyzed in a constant volume chamber to cover a wide range of superheat degrees. The injection pressure was set as 70 and 80 MPa with ambient pressure ranging from 0.2 to 4 MPa. The ambient temperature was 500 K. The results showed that the higher the injection pressure, the greater the kinetic energy obtained. The droplet fragmentation was enhanced, and the phenomenon of gradual separation of the gas–liquid region occurred with increasing injection pressure. Under flash boiling spray conditions, the spray developed faster than non-flash boiling and transition flash boiling spray under the same injection pressure. In addition, the flash boiling spray tip penetration of the gas and liquid increased more than that of cold spray, and the fluctuation of the late stage of the injection was relatively large. Therefore, the injection pressure has a greater effect on the spray tip penetration of flash boiling spray. Moreover, ambient pressure greatly influences the flare flash boiling spray. The spray resistance phenomenon was found during the spray development in the flare flash boiling condition. With the increase in ambient pressure, the spray tip penetration of flash boiling spray decreases due to the reduction in the pressure difference inside and outside the spray hole and the restriction of ambient gas. Meanwhile, owing to the low ambient pressure and ambient density, the liquid penetration in the initial phase of the flare flash boiling spray will be abnormally shorter than that of the non-flash boiling spray.

Funder

Natural Science Foundation of the Zhejiang Province

China Postdoctoral Science Foundation

Shaanxi Science and technology Nova

Young Innovative Talent Program

Ningbo Major Research and Development Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3