Affiliation:
1. Fire Command Department, China Fire and Rescue Institute, Beijing 102202, China
2. Yanchang Oilfield Seven-Mile Village Oil Extraction Plant, Ya’an 717200, China
3. Research Institute of Petroleum Exploration and Development, Beijing 100083, China
Abstract
With the continuous deepening of oil and gas exploration and development, unconventional oil and gas resources, represented by tight oil, have become research hotspots. However, few studies have investigated tight oil potential in any systematic way in the shell limestone reservoir of the Sichuan Basin. Herein, we used thin section analysis, X-ray diffraction (XRD), high-pressure mercury intrusion, low-pressure N2 and CO2 adsorption experiments, low-field nuclear magnetic resonance (NMR), focused ion beam–scanning electron microscopy (FIB-SEM), and nano-CT to characterize multi-porous media. The reservoir space controlled by nonfabric, shell, and matrix constitutes all the reservoir space for tight oil. The interconnected porosity was mainly distributed in the range of 1% to 5% (avg. 2.12%). The effective interconnected porosity mainly ranged from 0.5% to 2.0% (avg. 1.59%). The porosity of large fractures was 0.1% to 0.5% (avg. 0.21%). The porosity of isolated pores and bound oil–water pores was 0.2% to 0.8% (avg. 0.44%). The dissolved pores adjacent to fractures, the microfractures controlled by the shell, the microfractures controlled by the matrix, the isolated pores, and the intracrystalline pores constitute five independent pore-throat systems. The development of pores and fractures in shell limestone reservoirs are coupled on the centimeter–millimeter–micron–nanometer scale. Various reservoir-permeability models show continuous distribution characteristics. These findings make an important contribution to the exploration and exploitation of tight oil in shell limestone.
Funder
Major Special Project of the Ministry of Science and Technology of PetroChina