Enhancement of Mine Images through Reflectance Estimation of V Channel Using Retinex Theory

Author:

Wu Changlin12,Wang Dandan12,Huang Kaifeng12,Wu Long12

Affiliation:

1. School of Mechanical and Electrical Engineering, Huainan Normal University, Huainan 232001, China

2. Human-Computer Collaborative Robot Joint Laboratory of Anhui Province, Hefei 230002, China

Abstract

The dim lighting and excessive dust in underground mines often result in uneven illumination, blurriness, and loss of detail in surveillance images, which hinders subsequent intelligent image recognition. To address the limitations of the existing image enhancement algorithms in terms of generalization and accuracy, this paper proposes an unsupervised method for enhancing mine images in the hue–saturation–value (HSV) color space. Inspired by the HSV color space, the method first converts RGB images to the HSV space and integrates Retinex theory into the brightness (V channel). Additionally, a random perturbation technique is designed for the brightness. Within the same scene, a U-Net-based reflectance estimation network is constructed by enforcing consistency between the original reflectance and the perturbed reflectance, incorporating ResNeSt blocks and a multi-scale channel pixel attention module to improve accuracy. Finally, an enhanced image is obtained by recombining the original hue (H channel), brightness, and saturation (S channel), and converting back to the RGB space. Importantly, this image enhancement algorithm does not require any normally illuminated images during training. Extensive experiments demonstrated that the proposed method outperformed most existing unsupervised low-light image enhancement methods, qualitatively and quantitatively, achieving a competitive performance comparable to many supervised methods. Specifically, our method achieved the highest PSNR value of 22.18, indicating significant improvements compared to the other methods, and surpassing the second-best WCDM method by 10.3%. In terms of SSIM, our method also performed exceptionally well, achieving a value of 0.807, surpassing all other methods, and improving upon the second-place WCDM method by 19.5%. These results demonstrate that our proposed method significantly enhanced image quality and similarity, far exceeding the performance of the other algorithms.

Funder

This research was funded by the State Key Laboratory Open Fund of Mining Response 463 and Disaster Prevention , Control in Deep Coal Mines

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3