Classification Strategy for Power Quality Disturbances Based on Variational Mode Decomposition Algorithm and Improved Support Vector Machine

Author:

Gao Le1,Wang Jinhao1,Zhang Min1,Zhang Shifeng1,Wang Hanwen2,Wang Yang2

Affiliation:

1. State Grid Electric Power Research Institute of SEPC, Taiyuan 030001, China

2. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Abstract

With the continuous improvement in production efficiency and quality of life, the requirements of electrical equipment for power quality are also increasing. Accurate detection of various power quality disturbances is an effective measure to improve power quality. However, in practical applications, the dataset is often contaminated by noise, and when the dataset is not sufficient, the computational complexity is too high. Similarly, in the recognition process of artificial neural networks, the local optimum often occurs, which ultimately leads to low recognition accuracy for the trained model. Therefore, this article proposes a power quality disturbance classification strategy based on the variational mode decomposition (VMD) and improved support vector machine (SVM) algorithms. Firstly, the VMD algorithm is used for preprocessing disturbance denoising. Next, based on the analysis of typical fault characteristics, a multi-SVM model is used for disturbance classification identification. In order to improve the recognition accuracy, the improved Grey Wolf Optimization (IGWO) algorithm is used to optimize the penalty factor and kernel function parameters of the SVM model. The results of the final case study show that the classification accuracy of the proposed method can reach over 98%, and the recognition accuracy is higher than that of the other models.

Funder

State Grid Shanxi Electric Power Co., LTD. Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3